3,472 research outputs found

    Long Gamma-Ray Burst Host Galaxies and their Environments

    Full text link
    In this book-chapter we first briefly discuss some basic observational issues related to what a GRB host galaxy is (whether they are operationally well defined as a class) and sample completeness. We then describe some of the early studies of GRB hosts starting with statistical studies of upper limits done prior to the first detections, the first host detection after the BeppoSAX breakthrough and leading up to the current Swift era. Finally, we discuss the status of efforts to construct a more complete sample of GRBs based on Swift and end with an outlook. We only consider the host galaxies of long-duration GRBs.Comment: 31 pages, 14 figures; Chapter 13 in "Gamma-Ray Bursts", eds. C. Kouveliotou, R. A. M. J. Wijers, S. E. Woosley, Cambridge University Press, 201

    Microlensing variability in time-delay quasars

    Get PDF
    We have searched for microlensing variability in the light curves of five gravitationally lensed quasars with well-determined time delays: SBS 1520+530, FBQ 0951+2635, RX J0911+0551, B1600+434 and HE 2149-2745. By comparing the light curve of the leading image with a suitably time offset light curve of a trailing image we find that two (SBS 1520+530 and FBQ 0951+2635) out of the five quasars have significant long-term (years) and short-term (100 days) brightness variations that may be attributed to microlensing.The short-term variations may be due to nanolenses, relativistic hot or cold spots in the quasar accretion disks, or coherent microlensing at large optical depth.Comment: 12 pages, 5 figures, uses natbib.sty and aa.cl

    GRBs as Probes of Massive Stars Near and Far

    Full text link
    Long-duration gamma-ray bursts are the manifestations of massive stellar death. Due to the immense energy release they are detectable from most of the observable universe. In this way they allow us to study the deaths of single (or binary) massive stars possibly throughout the full timespan massive stars have existed in the Universe. GRBs provide a means to infer information about the environments and typical galaxies in which massive stars are formed. Two main obstacles remain to be crossed before the full potential of GRBs as probes of massive stars can be harvested: i) we need to build more complete and well understood samples in order not to be fooled by biases, and ii) we need to understand to which extent GRBs may be intrinsically biased in the sense that they are only formed by a limited subset of massive stars defined by most likely a restricted metallicity interval. We describe the status of an ongoing effort to build a more complete sample of long-duration GRBs with measured redshifts. Already now we can conclude that the environments of GRB progenitors are very diverse with metallicities ranging from solar to a hundredth solar and extinction ranging from none to A_V>5 mag. We have also identified a sightline with significant escape of Lyman continuum photons and another with a clear 2175AA extinction bump.Comment: Invited review - in "Massive Stars as Cosmic Engines", IAU Symp. 250 (Kauai), ed. F. Bresolin, P. A. Crowther, and J. Puls (Cambridge University Press), p. 443-456. Typos and refs correcte

    Delayed soft X-ray emission lines in the afterglow of GRB 030227

    Full text link
    Strong, delayed X-ray line emission is detected in the afterglow of GRB 030227, appearing near the end of the XMM-Newton observation, nearly twenty hours after the burst. The observed flux in the lines, not simply the equivalent width, sharply increases from an undetectable level (<1.7e-14 erg/cm^2/s, 3 sigma) to 4.1e-14 erg/cm^2/s in the final 9.7 ks. The line emission alone has nearly twice as many detected photons as any previous detection of X-ray lines. The lines correspond well to hydrogen and/or helium-like emission from Mg, Si, S, Ar and Ca at a redshift z=1.39. There is no evidence for Fe, Co or Ni--the ultimate iron abundance must be less than a tenth that of the lighter metals. If the supernova and GRB events are nearly simultaneous there must be continuing, sporadic power output after the GRB of a luminosity >~5e46 erg/s, exceeding all but the most powerful quasars.Comment: Submitted to ApJL. 14 pages, 3 figures with AASLaTe

    Swift Identification of Dark Gamma-Ray Bursts

    Get PDF
    We present an optical flux vs. X-ray flux diagram for all known gamma-ray bursts (GRBs) for which an X-ray afterglow has been detected. We propose an operational definition of dark bursts as those bursts that are optically subluminous with respect to the fireball model, i.e., which have an optical-to-X-ray spectral index beta_OX < 0.5. Out of a sample of 52 GRBs we identify 5 dark bursts. The definition and diagram serve as a simple and quick diagnostic tool for identifying dark GRBs based on limited information, particularly useful for early and objective identification of dark GRBs observed with the Swift satellite.Comment: 4 pages, 1 figure. ApJ Letters, in pres

    First-principles calculations of exchange interactions, spin waves, and temperature dependence of magnetization in inverse-Heusler-based spin gapless semiconductors

    Get PDF
    Employing first principles electronic structure calculations in conjunction with the frozen-magnon method we calculate exchange interactions, spin-wave dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin gapless semiconductor (SGS) compounds Mn2_2CoAl, Ti2_2MnAl, Cr2_2ZnSi, Ti2_2CoSi and Ti2_2VAs. We find that their magnetic behavior is similar to the half-metallic ferromagnetic full-Heusler alloys, i.e., the intersublattice exchange interactions play an essential role in the formation of the magnetic ground state and in determining the Curie temperature, TcT_\mathrm{c}. All compounds, except Ti2_2CoSi possess a ferrimagnetic ground state. Due to the finite energy gap in one spin channel, the exchange interactions decay sharply with the distance, and hence magnetism of these SGSs can be described considering only nearest and next-nearest neighbor exchange interactions. The calculated spin-wave dispersion curves are typical for ferrimagnets and ferromagnets. The spin-wave stiffness constants turn out to be larger than those of the elementary 3dd-ferromagnets. Calculated exchange parameters are used as input to determine the temperature dependence of the magnetization and TcT_\mathrm{c} of the SGSs. We find that the TcT_\mathrm{c} of all compounds is much above the room temperature. The calculated magnetization curve for Mn2_2CoAl as well as the Curie temperature are in very good agreement with available experimental data. The present study is expected to pave the way for a deeper understanding of the magnetic properties of the inverse-Heusler-based SGSs and enhance the interest in these materials for application in spintronic and magnetoelectronic devices.Comment: Accepted for publ;ication in Physical Review

    The Optically Unbiased GRB Host (TOUGH) survey. IV. Lyman-alpha emitters

    Full text link
    We report the results of a spectroscopic search for Lyman-alpha emission from gamma-ray burst host galaxies. Based on the well-defined TOUGH sample of 69 X-ray selected Swift GRBs, we have targeted the hosts of a subsample of 20 GRBs known from afterglow spectroscopy to be in the redshift range 1.8-4.5. We detect Lya emission from 7 out of the 20 hosts, with the typical limiting 3sigma line flux being 8E-18 erg/cm2/s, corresponding to a Lya luminosity of 6E41 erg/s at z=3. The Lya luminosities for the 7 hosts in which we detect Lya emission are in the range (0.6-2.3)E42 erg/s corresponding to star-formation rates of 0.6-2.1 Msun/yr (not corrected for extinction). The rest-frame Lya equivalent widths (EWs) for the 7 hosts are in the range 9-40A. For 6 of the 13 hosts for which Lya is not detected we place fairly strong 3sigma upper limits on the EW (<20A), while for others the EW is either unconstrained or has a less constraining upper limit. We find that the distribution of Lya EWs is inconsistent with being drawn from the Lya EW distribution of bright Lyman break galaxies at the 98.3% level, in the sense that the TOUGH hosts on average have larger EWs than bright LBGs. We can exclude an early indication, based on a smaller, heterogeneous sample of pre-Swift GRB hosts, that all GRB hosts are Lya emitters. We find that the TOUGH hosts on average have lower EWs than the pre-Swift GRB hosts, but the two samples are only inconsistent at the 92% level. The velocity centroid of the Lya line is redshifted by 200-700 km/s with respect to the systemic velocity, similar to what is seen for LBGs, possibly indicating star-formation driven outflows from the host galaxies. There seems to be a trend between the Lya EW and the optical to X-ray spectral index of the afterglow (beta_OX), hinting that dust plays a role in the observed strength and even presence of Lya emission. [ABRIDGED]Comment: ApJ accepted (v2: minor changes in the Subject headings and reference list

    Gamma-ray burst host galaxies and the link to star-formation

    Get PDF
    We briefly review the current status of the study of long-duration gamma-ray burst (GRB) host galaxies. GRB host galaxies are mainly interesting to study for two reasons: 1) they may help us understand where and when massive stars were formed throughout cosmic history, and 2) the properties of host galaxies and the localisation within the hosts where GRBs are formed may give essential clues to the precise nature of the progenitors. The main current problem is to understand to what degree GRBs are biased tracers of star formation. If GRBs are only formed by low-metallicity stars, then their host galaxies will not give a representative view of where stars are formed in the Universe (at least not a low redshifts). On the other hand, if there is no dependency on metallicity then the nature of the host galaxies leads to the perhaps surprising conclusion that most stars are formed in dwarf galaxies. In order to resolve this issue and to fully exploit the potential of GRBs as probes of star-forming galaxies throughout the observable universe it is mandatory that a complete sample of bursts with redshifts and host galaxy detections is built.Comment: 9 pages, 3 figures. To appear in the proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity, eds. H. Kleinert, R. T. Jantzen & R. Ruffini, World Scientific, Singapore, 200

    The Redshift Distribution of the TOUGH Survey

    Full text link
    We present the redshift results from a Very Large Telescope program aimed at optimizing the legacy value of the Swift mission: to characterize a homogeneous, X-ray selected, sample of 69 GRB host galaxies. 19 new redshifts have been secured, resulting in a 83% (57/69) redshift completion, making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, available to date. We present the cumulative redshift distribution and derive a conservative, yet small, associated uncertainty. We constrain the fraction of Swift GRBs at high redshift to a maximum of 10% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be > 2.2. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift (z > 3) appears to be in excess of predictions based on assumptions that it should follow conventional determinations of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example due to a dominant contribution from faint, undetected galaxies, or that GRB production is enhanced in the conditions of early star formation, beyond those usually ascribed to lower metallicity.Comment: 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 34 in eConf Proceedings C130414
    • …
    corecore